РАЗМНОЖЕНИЕ АКТИНИДИИ В КУЛЬТУРЕ IN VITRO ПУТЕМ РЕГЕНЕРАЦИИ

Зарнадзе Н.Ж. Ломтатидзе Н.Д.

Грузия, г. Батуми, Государственный университет им. Ш.Руставели

Для изучения регенерационной способности растений в качестве эксплантатов использовали участки разных листьев пробырочных культур: Установлено, что диплоидный вид Actinidia chinensis характеризуется более высокой регенерационной способностью по сравнению с гексаплоидным видом Actinidia deliciosa.

Биотехнологические методы ускоренного размножения уникальных генотипов и создания генетически разнообразного материала для селекции могут иметь широкий выход в практику лишь в тех случаях, когда обеспечивается стабильное получение массовых количеств регенерантов путем органогенеза. Трудность представляет подбор гормонов и их концентрациев для индукции регенерации растении. Однако надо отметить на сегодняшний день для древесных растении подбор фитогормонов не является проблемной, об этом твердит многочисленные работы по культуре тканей. [2, 3, 4].

Целью нашей работы было отработать условия индукции органогенеза и получить растения регенеранты двух видов актинидии: Actinidia deliciosa и Actinidia chinensis.

Для изучения регенерационной способности растений в качестве эксплантатов использовали участки разных листьев пробырочных культур: молодых, средних по возрасту и зрелых. Листья срезали с побегов, с нижней стороны делали вдоль жилки надрезы и помещали на питательную среду Гамборга В5, с добавлением, в зависимости от вариантов опыта, разных количеств БАП (3-15µм) и НУК (1,3µм).

Пассирование на свежую среду проводили через каждые 20 дней. Изучение каждого варианта опыта вели в течение около 8-10 недель (3-4 пассажа). Культивировали листовые эксплантаты при двух режимах: I) в течение 12 дней в темноте, в термостате при температуре $27 \pm 1^{\circ}$ C с последующим переносом на свет (освещенность 2-3 клюкс, фотопериод 16/8 часов, температура $25 \pm 1^{\circ}$ C), 2). эксперимент полностью проводился на свету при указанном выше световом и температурном режиме.

Морфогенетические потенции зрелых листьев были низкими. Большинство эксплантатов них около 85%) каллус (из образовывали, слегка увеличиваясь в объеме к концу 0-пассажа приобретали бледную желтовато-зеленую окраску и в первом же пассаже погибали. Другие из этого типа эксплантатов (15-20%) образовывали каллус вдоль жилки при наличии в среде НУК в концентрации 3 дм. Прирост биомассы у них по визуальной оценке был медленным, но синхронным. В последующих пассажах каллус возникновения формировал почки, частота которых была

значительно ниже, чем при использовании средних по возрасту листьев.

На эксплантантах листьев среднего возраста через 5-10 дней после их изоляции отмечали каллусообразование, которое начиналось с эксплантата. постепенно центральной части охватывая его периферию. Через 20-25 дней наблюдали дифференциацию морфогенных узлов, а через 30-35 дней от 0-пассажа регенерацию первичных листьев, почек и побегов. В дальнейшем в течение четырех пассажей интенсивность органогенеза возрастала, к концу 4-ого пассажа процесс дифференциации становился стабильным, а к 5-ому пассажу заметно уменьшался.

Вырашивание эксплантатов разных условиях освешения показало различный эффект: каллусогенез происходил в обоих режимах, но темнота стимулировала и ускоряла его индукцию. Морфогенетические потенции эксплантатов, предварительно инкубированных темноте, были более высокие, культивируемых непосредственно на свету, следовательно, темновой период выращивания в течение 12 дней благоприятно и эффективно дедиференциацию клеток и дальнейшее заложение морфогенных узлов.

Инициация каллусной ткани у диплоидного вида A.chinensis наблюдалась на 4-5 дней раньше, чем гексоплоидного A.deliciosa. Во всех вариантах диплоидный вид про-дуцировал большее число каллусов и соответственно у него установлен более высокий процент регенерации почек и побегов, чем у гексоплоидного. Индукция каллуса более интенсивно происходила на средах с 3µм НУК, при увеличении ее концентрации процесс усиливался, но формирование каллусов, характеризующихся повышенным регене-

рационным потенциалом отмечалось на средах о более низким содержанием НУК (сре-

ды С 1- С 5). Как видно из таблицы A.deliciosa и A.chinensis проявляли также разный уровень морфогенетического потенциала, который к тому же зависел от гормонального состава среды. Эксплантаты A. deliciosa на самые низкие концентрации БАП не отвечали образованием меристематических узлов и примордиальных почек в каллусе, A. chinensis свой морфогенетический потенциал проявляла в этих условиях очень слабо. (среды С1 и С5).

Интенсивность стеблевого морфогенеза заметно усиливалось с увеличением концентрации БАП в среде до определенного уровня, при этом оптимальные соотношения кон- центрации БАП и НУК были разными у изученных видов. Наиболее продуктивными для А. chinensis оказались среды Сз и С4, на которых формировались максимальное числорегенерантов. Для другого вида А. deliciosa, эффективные уровни регуляторов роста были сравнительно высокие. (среды С4 и С9).

Разные оптимальные уровни регуляторов роста для индукции органогенеза у изучен- ных видов, видимо, обусловлены генетически. Известно, что заложение и последующая реализация почек является следствием дифференциальной активности генов. Эта акти- вность регулируется гормональными индукторами [1]. Компетентность у разных генотипов, в том числе, видимо, и у

актинидии разная, что обусловило различия в оптимальных для регенерации в концентрациях экзогенных регуляторов роста.

Регенерированные почки и стебли срезали каллуса доращивали на среде Гамборга Б 5 с добавлением 3 и м БАП. Более 60-65% ИЗ регенерированных почек развивались, нормальные побеги. Побеги высотой 20-25 мм. переносили на среду содержащую концентрации укоренения. ИМК в Используемая среда обеспечила 90-100% -ное укоренение побегов видов актинидии. Укорененные растения-регенеранты переносили в нестерильные условия. Для пересадки использовали смесь почвы и речного песка в соотношении 1:1. Акклиматизацию проводили в теплице. В течение 5-6 дней поддерживали влажность 100%, которую постепенно снижали и через 8-10 дней растениярегенеранты актинидии могли нормально развиваться естественных условиях.

Таким образом, нами установлено, ОТР диплоидный Actinidia chinensis характеризуется более способностью регенерационной по сравнению с гексаплоидным Actinidia deliciosa. Наблюдали зависимость регенерации от пола растения, возраста исходного эксплантата (листа), условий от гормонального состава питательной среды. Для освещения обоих изученных

видов подобраны условия, обеспечивающие получение каллуса, его пассирование, регенерацию из него почек и побегов, их укоренению, перенос в открытый грунт и их приживание в естественных условиях. Установлено, что гормональный состав среды влияет на морфологию растений-регенерантов, изменяя форму листа. Однако эти изменения в процессе онтогенеза растений-регенерантов исчезали и укорененные растения морфологически не отличались от исходных растений.

Л ИТЕРАТУРА:

- 1. Бутенко Р.Г. Экспериментальный морфогенез и дифференциация в культуре клеток растений. М.Наука 1975 г.
- 2. Phehn D., Serrano G., Mercado A. Regeneration of whole plants from apical meristems of Pinus radiate // Plant Cell, Tissue and organ culture. 2003, 73. N 1.
- 3. Nanda R.M. In vitro embryogesis and plant regeneration in Acacia Arabica // Plant Cell, Tissue and Organ culture, 2003 V.73. N 3.
- 4. Branka P. Sibila J. Thegeneration ability in common oak (Quercus robur L.) Callus cultures // Acta pharm. 1995. V.45. N 2.